ﻻ يوجد ملخص باللغة العربية
A unifying principle explaining the numerical bounds of quantum correlations remains elusive despite the efforts devoted to identifying it. Here we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the quantum bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.
A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach uncon
We provide an historical perspective of how the notion of correlations has evolved within quantum physics. We begin by reviewing Shannons information theory and its first application in quantum physics, due to Everett, in explaining the information c
We show that genuine multiparty quantum correlations can exist on its own, without a supporting background of genuine multiparty classical correlations, even in macroscopic systems. Such possibilities can have important implications in the physics of quantum information and phase transitions.
The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light-cone with exponentially decaying tails. We discuss several consequences of this result in th
The quantum superposition principle has been extensively utilized in the quantum mechanical description of the bonding phenomenon. It explains the emergence of delocalized molecular orbitals and provides a recipe for the construction of near-exact el