ﻻ يوجد ملخص باللغة العربية
We provide an historical perspective of how the notion of correlations has evolved within quantum physics. We begin by reviewing Shannons information theory and its first application in quantum physics, due to Everett, in explaining the information conveyed during a quantum measurement. This naturally leads us to Lindblads information theoretic analysis of quantum measurements and his emphasis of the difference between the classical and quantum mutual information. After briefly summarising the quantification of entanglement using these and related ideas, we arrive at the concept of quantum discord that naturally captures the boundary between entanglement and classical correlations. Finally we discuss possible links between discord and the generation of correlations in thermodynamic transformations of coupled harmonic oscillators.
The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. This counterintuitive idea which has its roots in the nonextensive nature of black-hole entr
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements.
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renorm
We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The `quant
Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic r