ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Correlation Without Classical Correlations

199   0   0.0 ( 0 )
 نشر من قبل Dagomir Kaszlikowski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that genuine multiparty quantum correlations can exist on its own, without a supporting background of genuine multiparty classical correlations, even in macroscopic systems. Such possibilities can have important implications in the physics of quantum information and phase transitions.



قيم البحث

اقرأ أيضاً

A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach uncon ditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.
Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in qua ntum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.
Quantum discord quantifies non-classical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whol e Hilbert space: typically a state picked out at random has positive discord; and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension, and have direct implications on quantum computation and on the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.
A unifying principle explaining the numerical bounds of quantum correlations remains elusive despite the efforts devoted to identifying it. Here we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenar io with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the quantum bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.
523 - M.P. Seevinck 2009
** The primary topic of this dissertation is the study of the relationships between parts and wholes as described by particular physical theories, namely generalized probability theories in a quasi-classical physics framework and non-relativistic qua ntum theory. ** A large part of this dissertation is devoted to understanding different aspects of four different kinds of correlations: local, partially-local, no-signaling and quantum mechanical correlations. Novel characteristics of these correlations have been used to study how they are related and how they can be discerned via Bell-type inequalities that give non-trivial bounds on the strength of the correlations. ** The study of quantum correlations has also prompted us to study a) the multi-partite qubit state space with respect to its entanglement and separability characteristics, and b) the differing strength of the correlations in separable and entangled qubit states. Results include a novel classification of multipartite (partial) separability and entanglement, strong constraints on the monogamy of entanglement and of non-local correlations, and many new entanglement detection criteria that are directly experimentally accessible. ** Because of the generality of the investigation these results also have strong foundational as well as philosophical repercussions for the different sorts of physical theories as a whole; notably for the viability of hidden variable theories for quantum mechanics, for the possibility of doing experimental metaphysics, for the question of holism in physical theories, and for the classical vs. quantum dichotomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا