ﻻ يوجد ملخص باللغة العربية
Let $K$ be a field and $f:mathbb{P}^N to mathbb{P}^N$ a morphism. There is a natural conjugation action on the space of such morphisms by elements of the projective linear group $text{PGL}_{N+1}$. The group of automorphisms, or stabilizer group, of a given $f$ for this action is known to be a finite group. In this article, we address two mainly computational problems concerning automorphism groups. Given a finite subgroup of $text{PGL}_{N+1}$ determine endomorphisms of $mathbb{P}^N$ with that group as subgroup of its automorphism group. In particular, we show that every finite subgroup occurs infinitely often and discuss some associated rationality problems. Inversely, given an endomorphism determine its automorphism group. In particular, we extended the Faber-Manes-Viray fixed-point algorithm for $mathbb{P}^1$ to endomorphisms of $mathbb{P}^2$. A key component is an explicit bound on the size of the automorphism group depending on the degree of the endomorphism.
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the aut
The Hasse Weil bound restricts the number of points of a curve which are defined over a finite field; if the number of points meets this bound, the curve is called maximal. Giulietti and Korchmaros introduced a curve C_3 which is maximal over F_{q^6}
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
In this article we study automorphisms of Toeplitz subshifts. Such groups are abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity is non superlinear, we prove that the automorphism group is, modulo a finite c
We show that word hyperbolicity of automorphism groups of graph products $G_Gamma$ and of Coxeter groups $W_Gamma$ depends strongly on the shape of the defining graph $Gamma$. We also characterized those $Aut(G_Gamma)$ and $Aut(W_Gamma)$ in terms of $Gamma$ that are virtually free.