ﻻ يوجد ملخص باللغة العربية
The Hasse Weil bound restricts the number of points of a curve which are defined over a finite field; if the number of points meets this bound, the curve is called maximal. Giulietti and Korchmaros introduced a curve C_3 which is maximal over F_{q^6} and determined its automorphism group. Garcia, Guneri, and Stichtenoth generalized this construction to a family of curves C_n, indexed by an odd integer n greater than or equal to 3, such that C_n is maximal over F_{q^{2n}}. In this paper, we determine the automorphism group Aut(C_n) when n > 3; in contrast with the case n=3, it fixes the point at infinity on C_n. The proof requires a new structural result about automorphism groups of curves in characteristic p such that each Sylow p-subgroup has exactly one fixed point. MSC:11G20, 14H37.
Let $p$ be a prime, let $r$ and $q$ be powers of $p$, and let $a$ and $b$ be relatively prime integers not divisible by $p$. Let $C/mathbb F_{r}(t)$ be the superelliptic curve with affine equation $y^b+x^a=t^q-t$. Let $J$ be the Jacobian of $C$. By w
Let $K$ be a field and $f:mathbb{P}^N to mathbb{P}^N$ a morphism. There is a natural conjugation action on the space of such morphisms by elements of the projective linear group $text{PGL}_{N+1}$. The group of automorphisms, or stabilizer group, of a
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the aut
Fix integers $r,s_1,...,s_l$ such that $1leq lleq r-1$ and $s_lgeq r-l+1$, and let $Cal C(r;s_1,...,s_l)$ be the set of all integral, projective and nondegenerate curves $C$ of degree $s_1$ in the projective space $bold P^r$, such that, for all $i=2,
In this article, we show that in each of four standard families of hyperelliptic curves, there is a density-$1$ subset of members with the property that their Jacobians have adelic Galois representation with image as large as possible. This result co