ﻻ يوجد ملخص باللغة العربية
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For example, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
We study amenability of definable groups and topological groups, and prove various results, briefly described below. Among our main technical tools, of interest in its own right, is an elaboration on and strengthening of the Massicot-Wagner version
For certain theories of existentially closed topological differential fields, we show that there is a strong relationship between $mathcal Lcup{D}$-definable sets and their $mathcal L$-reducts, where $mathcal L$ is a relational expansion of the field
We prove that the theory of the $p$-adics ${mathbb Q}_p$ admits elimination of imaginaries provided we add a sort for ${rm GL}_n({mathbb Q}_p)/{rm GL}_n({mathbb Z}_p)$ for each $n$. We also prove that the elimination of imaginaries is uniform in $p$.
In this paper we completely characterize solvable real Lie groups definable in o-minimal expansions of the real field.
We will review the main results concerning the automorphism groups of saturated structures which were obtained during the two last decades. The main themes are: the small index property in the countable and uncountable cases; the possibility of recov