ﻻ يوجد ملخص باللغة العربية
Depending on their sizes, dust grains store more or less charges, catalyse more or less chemical reactions, intercept more or less photons and stick more or less efficiently to form embryos of planets. Hence the need for an accurate treatment of dust coagulation and fragmentation in numerical modelling. However, existing algorithms for solving the coagulation equation are over-diffusive in the conditions of 3D simulations. We address this challenge by developing a high-order solver based on the Discontinuous Galerkin method. This algorithm conserves mass to machine precision and allows to compute accurately the growth of dust grains over several orders of magnitude in size with a very limited number of dust bins.
FU Orionis-type stars are young stellar objects showing large outbursts due to highly enhanced accretion from the circumstellar disk onto the protostar. FUor-type outbursts happen in a wide variety of sources from the very embedded ones to those with
Motivated by finite element spaces used for representation of temperature in the compatible finite element approach for numerical weather prediction, we introduce locally bounded transport schemes for (partially-)continuous finite element spaces. The
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on
Dust grains are aligned with the interstellar magnetic field and drift through the interstellar medium (ISM). Evolution of interstellar dust is driven by grain motion. In this paper, we study the effect of grain alignment with magnetic fields and gra
ALMA observations of protoplanetary disks confirm earlier indications that there is a clear difference between the dust and gas radial extents. The origin of this difference is still debated, with both radial drift of the dust and optical depth effec