ترغب بنشر مسار تعليمي؟ اضغط هنا

Discontinuous Petrov-Galerkin boundary elements

204   0   0.0 ( 0 )
 نشر من قبل Norbert Heuer
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in [N. Heuer, F. Pinochet, arXiv 1309.1697 (to appear in SIAM J. Numer. Anal.)], we study the case of a hypersingular integral equation on open and closed polyhedral surfaces. We develop a general ultra-weak setting in fractional-order Sobolev spaces and prove its well-posedness and equivalence with the traditional formulation. Based on the ultra-weak formulation, we establish a discontinuous Petrov-Galerkin method with optimal test functions and prove its quasi-optimal convergence in related Sobolev norms. For closed surfaces, this general result implies quasi-optimal convergence in the L^2-norm. Some numerical experiments confirm expected convergence rates.



قيم البحث

اقرأ أيضاً

In this article, several discontinuous Petrov-Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered i n these derivations. Unlike with classical formulations used by Bubnov-Galerkin methods, with so-called ultraweak variational formulations, these two strategies in fact deliver different formulations in the PML region. One of the strategies, which is argued to be more physically natural, is employed for numerically solving two- and three-dimensional time-harmonic acoustic, elastic, and electromagnetic wave propagation problems, defined in unbounded domains. Through these numerical experiments, efficacy of the new DPG methods with PMLs is verified.
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all t he weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $texttt{PolyDPG}$ software supporting polygonal and conventional elements.
147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati ons. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
In this paper we propose and analyze a Discontinuous Galerkin method for a linear parabolic problem with dynamic boundary conditions. We present the formulation and prove stability and optimal a priori error estimates for the fully discrete scheme. M ore precisely, using polynomials of degree $pgeq 1$ on meshes with granularity $h$ along with a backward Euler time-stepping scheme with time-step $Delta t$, we prove that the fully-discrete solution is bounded by the data and it converges, in a suitable (mesh-dependent) energy norm, to the exact solution with optimal order $h^p + Delta t$. The sharpness of the theoretical estimates are verified through several numerical experiments.
We present a Petrov-Gelerkin (PG) method for a class of nonlocal convection-dominated diffusion problems. There are two main ingredients in our approach. First, we define the norm on the test space as induced by the trial space norm, i.e., the optima l test norm, so that the inf-sup condition can be satisfied uniformly independent of the problem. We show the well-posedness of a class of nonlocal convection-dominated diffusion problems under the optimal test norm with general assumptions on the nonlocal diffusion and convection kernels. Second, following the framework of Cohen et al.~(2012), we embed the original nonlocal convection-dominated diffusion problem into a larger mixed problem so as to choose an enriched test space as a stabilization of the numerical algorithm. In the numerical experiments, we use an approximate optimal test norm which can be efficiently implemented in 1d, and study its performance against the energy norm on the test space. We conduct convergence studies for the nonlocal problem using uniform $h$- and $p$-refinements, and adaptive $h$-refinements on both smooth manufactured solutions and solutions with sharp gradient in a transition layer. In addition, we confirm that the PG method is asymptotically compatible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا