ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars

245   0   0.0 ( 0 )
 نشر من قبل Vinicius Placco
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944 (V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD196944 has been well-studied in the optical region, but we are able to add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P=1325 days. HD201626 has only a limited number of abundance results based on previous optical work -- here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, aiming to explain their origin and evolution. Our best-fitting models for HD 196944 (M1,i = 0.9Mo, M2,i = 0.86Mo, for [Fe/H]=-2.2), and HD 201626 (M1,i = 0.9Mo , M2,i = 0.76Mo , for [Fe/H]=-2.2; M1,i = 1.6Mo , M2,i = 0.59Mo, for [Fe/H]=-1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars.



قيم البحث

اقرأ أيضاً

We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44 493, a 9th magnitude sub-giant with [Fe/H] = -3.8 and enhanced carbon, based on data acquired with the Space Telescope I maging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44 493, logeps(B) < -0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, logeps(Be) < -2.3, and lead, logeps(Pb) < -0.23 ([Pb/Fe] < +1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44 493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.
With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst range d from a few 1.E-5 sollar mass to 3.3E-4 sollar mass, and assuming a mass accretion rate of 1.E-8 to 1.E-7 Sollar mass/yr for 44yrs, it has been concluded that the white dwaf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope (HST) COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8kpc; Sokoloski et al. 2013, larger than the previous 3.5kpc estimate), our derived reddening of E(B-V)=0.35 (based on combined IUE and GALEX spectra) and NLTE disk modeling (compared to black body and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 < E(B-V) < 0.50) and white dwaf mass (0.70 to 1.35 Sollar mass) the accreted mass is larger than the ejected mass. Only for a low reddening (0.25 and smaller) combined with a large white dwaf mass (0.9 sollar mass and larger) is the ejected mass larger than the accreted one. However, the best spectral fitting results are obtained for a larger value of the reddening.
We provide an updated discussion of the sample of CEMP-s and CEMP-s/r stars collected from the literature. Observations are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) stars presented by Bisterzo et al. (2010 , 2011, 2012), in the light of the most recent spectroscopic results.
We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8) quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the CIV emissio n line. Nine of the quasars are from the Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from the Parkes catalog. The sample contains a few interesting quasars including two broad absorption line (BAL) quasars (HE0143-3535, HE0436-2614), one quasar with a mini-BAL (HE1105-0746), and one quasar with associated narrow absorption (HE0409-5004). These BAL quasars are among the brightest known (though not the most luminous) since they lie at z<0.8. We compare the properties of these BAL quasars to the z<0.5 Palomar-Green and z>1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar, HE0441-2826, contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum. The quasar is radio-loud, but has a steep spectral index and a lobe-dominated morphology, which argues against it being a blazar. The unusual spectrum of this quasar resembles the spectra of the quasars PG1407+265, SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have been entertained.
In order to get a broader view of the s-process nucleosynthesis we study the abundance distribution of heavy elements of 35 barium stars and 24 CEMP-stars, including nine CEMP-s stars and 15 CEMP-r/s stars. The similar distribution of [Pb/hs] between CEMP-s and CEMP-r/s stars indicate that the s-process material of both CEMP-s and CEMP-r/s stars should have a uniform origin, i.e. mass transfer from their predominant AGB companions. For the CEMP-r/s stars, we found that the r-process should provide similar proportional contributes to the second s-peak and the third s-peak elements, and also be responsible for the higher overabundance of heavy elements than those in CEMP-s stars. Which hints that the r-process origin of CEMP-r/s stars should be closely linked to the main r-process. The fact that some small $r$ values exist for both barium and CEMP-s stars, implies that the single exposure event of the s-process nucleosynthesis should be general in a wide metallicity range of our Galaxy. Based on the relation between $C_{r}$ and $C_{s}$, we suggest that the origin of r-elements for CEMP-r/s stars have more sources. A common scenario is that the formation of the binary system was triggered by only one or a few supernova. In addition, accretion-induced collapse(AIC) or SN 1.5 should be the supplementary scenario, especially for these whose pre-AGB companion with higher mass and smaller orbit radius, which support the higher values of both $C_{r}$ and $C_{s}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا