ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Near-Ultraviolet Spectroscopy of the Bright CEMP-no Star BD+44 493

120   0   0.0 ( 0 )
 نشر من قبل Vinicius Placco
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44 493, a 9th magnitude sub-giant with [Fe/H] = -3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44 493, logeps(B) < -0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, logeps(Be) < -2.3, and lead, logeps(Pb) < -0.23 ([Pb/Fe] < +1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44 493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.



قيم البحث

اقرأ أيضاً

We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944 (V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD196944 has been well-studied in the optical region, but we are able to add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P=1325 days. HD201626 has only a limited number of abundance results based on previous optical work -- here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, aiming to explain their origin and evolution. Our best-fitting models for HD 196944 (M1,i = 0.9Mo, M2,i = 0.86Mo, for [Fe/H]=-2.2), and HD 201626 (M1,i = 0.9Mo , M2,i = 0.76Mo , for [Fe/H]=-2.2; M1,i = 1.6Mo , M2,i = 0.59Mo, for [Fe/H]=-1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars.
72 - Wako Aoki 2015
Molecular absorption lines of OH (99 lines) and CH (105 lines) are measured for the carbon-enhanced metal-poor star BD+44 493 with [Fe/H]=-3.8. The abundances of oxygen and carbon determined from individual lines based on an 1D-LTE analysis exhibit s ignificant dependence on excitation potentials of the lines; d log e/d chi ~ -0.15 - -0.2 dex/eV, where e and chi are elemental abundances from individual spectral lines and their excitation potentials, respectively. The dependence is not explained by the uncertainties of stellar parameters, but suggests that the atmosphere of this object possesses a cool layer that is not reproduced by the 1D model atmosphere. This result agrees with the predictions by 3D model calculations. Although absorption lines of neutral iron exhibit similar trend, it is much weaker than found in molecular lines and that predicted by 3D LTE models.
132 - H. Ito , W. Aoki , T.C. Beers 2013
We present detailed chemical abundances for the bright carbon-enhanced metal-poor (CEMP) star BD+44 493, previously reported on by Ito et al. Our measurements confirm that BD+44 493 is an extremely metal-poor ([Fe/H]=-3.8) subgiant star with excesses of carbon and oxygen. No significant excesses are found for nitrogen and neutron-capture elements (the latter of which place it in the CEMP-no class of stars). Other elements that we measure exhibit abundance patterns that are typical for non-CEMP extremely metal-poor stars. No evidence for variations of radial velocity have been found for this star. These results strongly suggest that the carbon enhancement in BD+44 493 is unlikely to have been produced by a companion asymptotic giant-branch star and transferred to the presently observed star, nor by pollution of its natal molecular cloud by rapidly-rotating, massive, mega metal-poor ([Fe/H] < -6.0) stars. A more likely possibility is that this star formed from gas polluted by the elements produced in a faint supernova, which underwent mixing and fallback, and only ejected small amounts of elements of metals beyond the lighter elements. The Li abundance of BD+44 493 (A(Li)=log(Li/H)+12=1.0) is lower than the Spite plateau value, as found in other metal-poor subgiants. The upper limit on Be abundance (A(Be)=log(Be/H)+12<-1.8) is as low as those found for stars with similarly extremely-low metallicity, indicating that the progenitors of carbon- (and oxygen-) enhanced stars are not significant sources of Be, or that Be is depleted in metal-poor subgiants with effective temperatures of ~5400K.
With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst range d from a few 1.E-5 sollar mass to 3.3E-4 sollar mass, and assuming a mass accretion rate of 1.E-8 to 1.E-7 Sollar mass/yr for 44yrs, it has been concluded that the white dwaf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope (HST) COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8kpc; Sokoloski et al. 2013, larger than the previous 3.5kpc estimate), our derived reddening of E(B-V)=0.35 (based on combined IUE and GALEX spectra) and NLTE disk modeling (compared to black body and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 < E(B-V) < 0.50) and white dwaf mass (0.70 to 1.35 Sollar mass) the accreted mass is larger than the ejected mass. Only for a low reddening (0.25 and smaller) combined with a large white dwaf mass (0.9 sollar mass and larger) is the ejected mass larger than the accreted one. However, the best spectral fitting results are obtained for a larger value of the reddening.
We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8) quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the CIV emissio n line. Nine of the quasars are from the Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from the Parkes catalog. The sample contains a few interesting quasars including two broad absorption line (BAL) quasars (HE0143-3535, HE0436-2614), one quasar with a mini-BAL (HE1105-0746), and one quasar with associated narrow absorption (HE0409-5004). These BAL quasars are among the brightest known (though not the most luminous) since they lie at z<0.8. We compare the properties of these BAL quasars to the z<0.5 Palomar-Green and z>1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar, HE0441-2826, contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum. The quasar is radio-loud, but has a steep spectral index and a lobe-dominated morphology, which argues against it being a blazar. The unusual spectrum of this quasar resembles the spectra of the quasars PG1407+265, SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have been entertained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا