ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Far Ultraviolet Spectroscopy of the Recurrent Nova T Pyxidis

131   0   0.0 ( 0 )
 نشر من قبل Patrick Godon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few 1.E-5 sollar mass to 3.3E-4 sollar mass, and assuming a mass accretion rate of 1.E-8 to 1.E-7 Sollar mass/yr for 44yrs, it has been concluded that the white dwaf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope (HST) COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8kpc; Sokoloski et al. 2013, larger than the previous 3.5kpc estimate), our derived reddening of E(B-V)=0.35 (based on combined IUE and GALEX spectra) and NLTE disk modeling (compared to black body and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 < E(B-V) < 0.50) and white dwaf mass (0.70 to 1.35 Sollar mass) the accreted mass is larger than the ejected mass. Only for a low reddening (0.25 and smaller) combined with a large white dwaf mass (0.9 sollar mass and larger) is the ejected mass larger than the accreted one. However, the best spectral fitting results are obtained for a larger value of the reddening.



قيم البحث

اقرأ أيضاً

We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944 (V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD196944 has been well-studied in the optical region, but we are able to add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P=1325 days. HD201626 has only a limited number of abundance results based on previous optical work -- here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, aiming to explain their origin and evolution. Our best-fitting models for HD 196944 (M1,i = 0.9Mo, M2,i = 0.86Mo, for [Fe/H]=-2.2), and HD 201626 (M1,i = 0.9Mo , M2,i = 0.76Mo , for [Fe/H]=-2.2; M1,i = 1.6Mo , M2,i = 0.59Mo, for [Fe/H]=-1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars.
The 2008 discovery of an eruption of M31N 2008-12a began a journey on which the true nature of this remarkable recurrent nova continues to be revealed. M31N 2008-12a contains a white dwarf close to the Chandrasekhar limit, accreting at a high rate fr om its companion, and undergoes thermonuclear eruptions which are observed yearly and may even be twice as frequent. In this paper, we report on Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectroscopy taken within days of the predicted 2015 eruption, coupled with Keck spectroscopy of the 2013 eruption. Together, this spectroscopy permits the reddening to be constrained to E(B-V) = 0.10 +/- 0.03. The UV spectroscopy reveals evidence for highly ionized, structured, and high velocity ejecta at early times. No evidence for neon is seen in these spectra however, but it may be that little insight can be gained regarding the composition of the white dwarf (CO vs ONe).
T Pyxidis is the only recurrent nova surrounded by knots of material ejected in previous outbursts. Following the eruption that began on 2011 April 14.29, we obtained seven epochs (from 4 to 383 days after eruption) of Hubble Space Telescope narrowba nd Ha images of T Pyx . The flash of radiation from the nova event had no effect on the ejecta until at least 55 days after the eruption began. Photoionization of hydrogen located north and south of the central star was seen 132 days after the beginning of the eruption. That hydrogen recombined in the following 51 days, allowing us to determine a hydrogen atom density of at least 7e5 cm^-3 - at least an order of magnitude denser than the previously detected, unresolved [NII] knots surrounding T Pyx. Material to the northwest and southeast was photoionized between 132 and 183 days after the eruption began. 99 days later that hydrogen had recombined. Both then (282 days after outburst) and 101 days later, we detected almost no trace of hydrogen emission around T Pyx. There is a large reservoir of previously unseen, cold diffuse hydrogen overlapping the previously detected, [NII] - emitting knots of T Pyx ejecta. The mass of this newly detected hydrogen is probably an order of magnitude larger than that of the [NII] knots. We also determine that there is no significant reservoir of undetected ejecta from the outer boundaries of the previously detected ejecta out to about twice that distance, near the plane of the sky. The lack of distant ejecta is consistent with the Schaefer et al (2010) scenario for T Pyx, in which the star underwent its first eruption within five years of 1866 after many millennia of quiescence, followed by the six observed recurrent nova eruptions since 1890. This lack of distant ejecta is not consistent with scenarios in which T Pyx has been erupting continuously as a recurrent nova for many centuries or millennia.
117 - Paul D. Feldman 2018
Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have see n large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.5 arcsec diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400 to 1700 A. In the two brightest comets, nineteen bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 A by the Space Telescope Imaging Spectrograph (STIS). The derived CO/H2O production rate ratio ranged from ~0.3% for Hartley 2 to ~22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 A and 1479 A, and of C I at 1561 A and 1657 A, were observed in all four comets. Weak emission from several lines of the H2 Lyman band system, excited by solar Lyman-alpha and Lyman-beta pumped fluorescence, were detected in comet Lovejoy.
By various methods, we obtained L$_{disk}$ $sim$ 70 L$_{odot}$ and $dot{M}$ $sim$1.1 $times$ 10$^{-8}$ M$_{odot}$yr$^{-1}$. These values were about twice as high in the pre-1966-outburst epoch. This allowed the first direct estimate of the total mass accreted before outburst, M$_{accr}$=$dot{M}_{pre-OB}$ $cdot Delta$t, and its comparison with the critical ignition mass M$_{ign}$. We found M$_{accr}$ and M$_{ign}$ to be in perfect agreement (with a value close to 5 $times$ 10$^{-7}$M$_{odot}$) for M$_1$ $sim$ 1.37 M$_{odot}$, which provides a confirmation of the thermonuclear runaway theory. The comparison of the observed parameters of the eruption phase, with the corresponding values in the grid of models by Yaron and collaborators, provides satisfactory agreement for values of M$_1$ close to 1.35 M$_{odot}$ and log$dot{M}$ between -8.0 and -7.0, but the observed value of the decay time t$_3$ is higher than expected. The long duration of the optically thick phase during the recorded outbursts of T Pyx, a spectroscopic behavior typical of classical novae, and the persistence of P Cyg profiles, constrains the ejected mass M$_{ign}$ to within 10$^{-5}$ - 10$^{-4}$ M$_{odot}$. Therefore, T Pyx ejects far more material than it has accreted, and the mass of the white dwarf will not increase to the Chandrasekhar limit as generally believed in recurrent novae. A detailed study based on the UV data excludes the possibility that T Pyx belongs to the class of the supersoft X-ray sources, as has been postulated. XMM-NEWTON observations have revealed a weak, hard source and confirmed this interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا