ترغب بنشر مسار تعليمي؟ اضغط هنا

Omega-Phi mixing at finite temperature

95   0   0.0 ( 0 )
 نشر من قبل Charles Gale
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English
 تأليف Charles Gale -




اسأل ChatGPT حول البحث

We compute the mass shifts and mixing of the Omega and Phi mesons at finite temperature due to scattering from thermal pions. The Rho and b_1 mesons are important intermediate states. Up to a temperature of 140 MeV the Omega mass increases by 12 MeV and the Phi mass decreases by 0.6 MeV. The change in mixing angles is negligible.



قيم البحث

اقرأ أيضاً

In this proceedings we present a state-of-the-art method of calculating thermodynamic potential at finite temperature and finite chemical potential, using Hard Thermal Loop perturbation theory (HTLpt) up to next-to-next-leading-order (NNLO). The resu lting thermodynamic potential enables us to evaluate different thermodynamic quantities including pressure and various quark number susceptibilities (QNS). Comparison between our analytic results for those thermodynamic quantities with the available lattice data shows a good agreement.
168 - Yin-Zhen Xu , Si-Xue Qin , 2021
We study chiral symmetry restoration by analyzing thermal properties of QCDs (pseudo-)Goldstone bosons, especially the pion. The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions. To obtain the correlation functions, we solve the Dyson-Schwinger equations and the inhomogeneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation. In the chiral limit, the pion and its partner sigma degenerate at the critical temperature $T_c$. At $T gtrsim T_c$, it is found that the pion rapidly dissociates, which signals deconfinement phase transition. Beyond the chiral limit, the pion dissociation temperature can be used to define the pseudo-critical temperature of chiral phase crossover, which is consistent with that obtained by the maximum point of the chiral susceptibility. The parallel analysis for kaon and pseudoscalar $sbar{s}$ suggests that heavy mesons may survive above $T_c$.
133 - M. Nishimura 2012
We demonstrate the applicability of integration-by-parts (IBP) identities in finite-temperature field theory. As a concrete example, we perform 3-loop computations for the thermodynamic pressure of QCD in general covariant gauges, and confirm earlier Feynman-gauge results.
It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodyn amics. It is indicated within this low energy effective model that the chiral symmetry is broken again by the spin polarized condensate as increasing the quark number density, while the chiral symmetry restoration occurs in which the chiral condensate disappears at a certain density.
We investigate the possible existence of spin polarization and color superconductivity in the Nambu--Jona-Lasinio model with a tensor-type interaction at finite density and temperature. The thermodynamic potential is calculated by the functional inte gral method. Numerical results indicate that at low temperature and quark chemical potential the chiral condensed phase exists, and at intermediate chemical potential the color superconducting phase appears. In addition, depending on the magnitude of the tensor coupling, at large chemical potential and low temperature, a color superconducting phase and a spin polarized phase may coexist while at intermediate temperatures only the spin polarized phase occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا