ﻻ يوجد ملخص باللغة العربية
We present a new aperiodic tileset containing 11 Wang tiles on 4 colors, and we show that this tileset is minimal, in the sense that no Wang set with either fewer than 11 tiles or fewer than 4 colors is aperiodic. This gives a definitive answer to the problem raised by Wang in 1961.
We define a Wang tile set $mathcal{U}$ of cardinality 19 and show that the set $Omega_mathcal{U}$ of all valid Wang tilings $mathbb{Z}^2tomathcal{U}$ is self-similar, aperiodic and is a minimal subshift of $mathcal{U}^{mathbb{Z}^2}$. Thus $mathcal{U}
Microstructural geometry plays a critical role in the response of heterogeneous materials. Consequently, methods for generating microstructural samples are increasingly crucial to advanced numerical analyses. We extend Sonon et al.s unified framework
This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles $mathcal{B}$, spatial chaos occurs when the spatial entropy $h(mathcal{B})$ is positive. $mathcal{B}$ is
The Wang tiling is a classical problem in combinatorics. A major theoretical question is to find a (small) set of tiles which tiles the plane only aperiodically. In this case, resulting tilings are rather restrictive. On the other hand, Wang tiles ar
Motivated by the study of Fibonacci-like Wang shifts, we define a numeration system for $mathbb{Z}$ and $mathbb{Z}^2$ based on the binary alphabet ${0,1}$. We introduce a set of 16 Wang tiles that admits a valid tiling of the plane described by a det