ﻻ يوجد ملخص باللغة العربية
This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles $mathcal{B}$, spatial chaos occurs when the spatial entropy $h(mathcal{B})$ is positive. $mathcal{B}$ is called a minimal cycle generator if $mathcal{P}(mathcal{B}) eqemptyset$ and $mathcal{P}(mathcal{B})=emptyset$ whenever $mathcal{B}subsetneqq mathcal{B}$, where $mathcal{P}(mathcal{B})$ is the set of all periodic patterns on $mathbb{Z}^{2}$ generated by $mathcal{B}$. Given a set of Wang tiles $mathcal{B}$, write $mathcal{B}=C_{1}cup C_{2} cupcdots cup C_{k} cup N$, where $C_{j}$, $1leq jleq k$, are minimal cycle generators and $mathcal{B}$ contains no minimal cycle generator except those contained in $C_{1}cup C_{2} cupcdots cup C_{k}$. Then, the positivity of spatial entropy $h(mathcal{B})$ is completely determined by $C_{1}cup C_{2} cupcdots cup C_{k}$. Furthermore, there are 39 equivalent classes of marginal positive-entropy (MPE) sets of Wang tiles and 18 equivalent classes of saturated zero-entropy (SZE) sets of Wang tiles. For a set of Wang tiles $mathcal{B}$, $h(mathcal{B})$ is positive if and only if $mathcal{B}$ contains an MPE set, and $h(mathcal{B})$ is zero if and only if $mathcal{B}$ is a subset of an SZE set.
We define a Wang tile set $mathcal{U}$ of cardinality 19 and show that the set $Omega_mathcal{U}$ of all valid Wang tilings $mathbb{Z}^2tomathcal{U}$ is self-similar, aperiodic and is a minimal subshift of $mathcal{U}^{mathbb{Z}^2}$. Thus $mathcal{U}
We present a new aperiodic tileset containing 11 Wang tiles on 4 colors, and we show that this tileset is minimal, in the sense that no Wang set with either fewer than 11 tiles or fewer than 4 colors is aperiodic. This gives a definitive answer to the problem raised by Wang in 1961.
Microstructural geometry plays a critical role in the response of heterogeneous materials. Consequently, methods for generating microstructural samples are increasingly crucial to advanced numerical analyses. We extend Sonon et al.s unified framework
A recently introduced representation by a set of Wang tiles -- a generalization of the traditional Periodic Unit Cell based approach -- serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an effi
Chaotic dynamics can be quite heterogeneous in the sense that in some regions the dynamics are unstable in more directions than in other regions. When trajectories wander between these regions, the dynamics is complicated. We say a chaotic invariant