ﻻ يوجد ملخص باللغة العربية
Let $W_{m|n}$ be the (finite) $W$-algebra attached to the principal nilpotent orbit in the general linear Lie superalgebra $mathfrak{gl}_{m|n}(mathbb{C})$. In this paper we study the {em Whittaker coinvariants functor}, which is an exact functor from category $mathcal O$ for $mathfrak{gl}_{m|n}(mathbb{C})$ to a certain category of finite-dimensional modules over $W_{m|n}$. We show that this functor has properties similar to Soergels functor $mathbb V$ in the setting of category $mathcal O$ for a semisimple Lie algebra. We also use it to compute the center of $W_{m|n}$ explicitly, and deduce some consequences for the classification of blocks of $mathcal O$ up to Morita/derived equivalence.
Let $mathsf k$ be a local field. Let $I_ u$ and $I_{ u}$ be smooth principal series representations of $mathrm{GL}_n(mathsf k)$ and $mathrm{GL}_{n-1}(mathsf k)$ respectively. The Rankin-Selberg integrals yield a continuous bilinear map $I_ utimes I_{
Following the paradigm of cite{MR3117742}, we are going to explore the stable transfer factors for $mathrm{Sym}^{n}$ lifting from $mathrm{GL}_{2}$ to $mathrm{GL}_{n+1}$ over any local fields $F$ of characteristic zero with residue characteristic not
For an irreducible module $P$ over the Weyl algebra $mathcal{K}_n^+$ (resp. $mathcal{K}_n$) and an irreducible module $M$ over the general liner Lie algebra $mathfrak{gl}_n$, using Shens monomorphism, we make $Potimes M$ into a module over the Witt a
The Capelli problem for the symmetric pairs $(mathfrak{gl}times mathfrak{gl},mathfrak{gl})$ $(mathfrak{gl},mathfrak{o})$, and $(mathfrak{gl},mathfrak{sp})$ is closely related to the theory of Jack polynomials and shifted Jack polynomials for special
In this note we consider representations of the group GL(n,F), where F is the field of real or complex numbers or, more generally, an arbitrary local field, in the space of equivariant line bundles over Grassmannians over the same field F. We study r