ﻻ يوجد ملخص باللغة العربية
We review the observational evidence for dust formation in Wolf-Rayet binary systems and in Type II Supernova ejecta. Existing theoretical models describing the condensation of solids in carbon-rich Wolf-Rayet stars and in Supernovae close by and at high redshift are discussed. We describe new modeling of carbon- and oxygen-based grain nucleation using a chemical kinetic approach applied to the ejecta of massive pair-instability Supernovae in the early universe. Finally, dust formation processes in colliding wind regions of WC binary systems are discussed.
Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars
Dust plays a key role in the formation of planets and its emission also provides one of our most accessible views of protoplanetary discs. If set by radiative equilibrium with the central star, the temperature of dust in the disc plateaus at around $
We analyse N-body and Smoothed Particle Hydrodynamic (SPH) simulations of young star-forming regions to search for differences in the spatial distributions of massive stars compared to lower-mass stars. The competitive accretion theory of massive sta
The pressure exerted by massive stars radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have
The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scatte