ﻻ يوجد ملخص باللغة العربية
In particulate systems with short-range interactions, such as granular matter or simple fluids, local structure plays a pivotal role in determining the macroscopic physical properties. Here, we analyse local structure metrics derived from the Voronoi diagram of configurations of oblate ellipsoids, for various aspect ratios $alpha$ and global volume fractions $phi_g$. We focus on jammed static configurations of frictional ellipsoids, obtained by tomographic imaging and by discrete element method simulations. In particular, we consider the local packing fraction $phi_l$, defined as the particles volume divided by its Voronoi cell volume. We find that the probability $P(phi_l)$ for a Voronoi cell to have a given local packing fraction shows the same scaling behaviour as function of $phi_g$ as observed for random sphere packs. Surprisingly, this scaling behaviour is further found to be independent of the particle aspect ratio. By contrast, the typical Voronoi cell shape, quantified by the Minkowski tensor anisotropy index $beta=beta_0^{2,0}$, points towards a significant difference between random packings of spheres and those of oblate ellipsoids. While the average cell shape $beta$ of all cells with a given value of $phi_l$ is very similar in dense and loose jammed sphere packings, the structure of dense and loose ellipsoid packings differs substantially such that this does not hold true. This non-universality has implications for our understanding of jamming of aspherical particles.
We study the vibrational modes of three-dimensional jammed packings of soft ellipsoids of revolution as a function of particle aspect ratio $epsilon$ and packing fraction. At the jamming transition for ellipsoids, as distinct from the idealized case
Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroi
We measure the two-point correlation of free Voronoi volumes in binary disc packings, where the packing fraction $phi_{rm avg}$ ranges from 0.8175 to 0.8380. We observe short-ranged correlations over the whole range of $phi_{rm avg}$ and anti-correla
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic time scale that diverges at jamming. This slow time scale is fully encoded in the structure of the unjammed packing an
We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We fin