ﻻ يوجد ملخص باللغة العربية
Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the particle resides. These vectors tend to point in toward regions of high free volume and away from regions of low free volume, reminiscent of sinks and sources in a vector field. We compute the local divergence of these vectors, for which positive values correspond to overpacked regions and negative values identify underpacked regions within the material. Distributions of this divergence are nearly Gaussian with zero mean, allowing for structural characterization using only the moments of the distribution. We explore how the standard deviation and skewness vary with packing fraction for simulations of bidisperse systems and find a kink in these moments that coincides with the jamming transition.
In particulate systems with short-range interactions, such as granular matter or simple fluids, local structure plays a pivotal role in determining the macroscopic physical properties. Here, we analyse local structure metrics derived from the Voronoi
Yield stress fluids display complex dynamics, in particular when driven into the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesocale elasto-plastic descriptions t
A wide range of materials can exist in microscopically disordered solid forms, referred to as amorphous solids or glasses. Such materials -- oxide glasses and metallic glasses, to polymer glasses, and soft solids such as colloidal glasses, emulsions
It is observed that a constant unit vector denoted by $mathbf I$ is needed to characterize a complete orthonormal set of vector diffraction-free beams. The previously found diffraction-free beams are shown to be included as special cases. The $mathbf
Atomistic simulations are employed to study structural evolution of pore ensembles in binary glasses under periodic shear deformation with varied amplitude. The consideration is given to porous systems in the limit of low porosity. The initial ensemb