ﻻ يوجد ملخص باللغة العربية
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic time scale that diverges at jamming. This slow time scale is fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational density of states. We show that the corresponding dynamic critical exponent is the same for randomly generated and sheared packings. Our results show that a wide variety of physical situations, from suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging timescale, with a universal critical exponent.
We numerically investigate stress relaxation in soft athermal disks to reveal critical slowing down when the system approaches the jamming point. The exponents describing the divergence of the relaxation time differ dramatically depending on whether
We study the vibrational modes of three-dimensional jammed packings of soft ellipsoids of revolution as a function of particle aspect ratio $epsilon$ and packing fraction. At the jamming transition for ellipsoids, as distinct from the idealized case
Self-organization, and transitions from reversible to irreversible behaviour, of interacting particle assemblies driven by externally imposed stresses or deformation is of interest in comprehending diverse phenomena in soft matter. They have been inv
We present experimental and numerical results for displacement response functions in packings of rigid frictional disks under gravity. The central disk on the bottom layer is shifted upwards by a small amount, and the motions of disks above it define
We describe a series of experiments involving the creation of cylindrical packings of star-shaped particles, and an exploration of the stability of these packings. The stars cover a broad range of arm sizes and frictional properties. We carried out t