ﻻ يوجد ملخص باللغة العربية
Tropical limit for macroscopic systems in equilibrium defined as the formal limit of Boltzmann constant k going to 0 is discussed. It is shown that such tropical limit is well-adapted to analyse properties of systems with highly degenerated energy levels, particularly of frustrated systems like spin ice and spin glasses. Tropical free energy is a piecewise linear function of temperature, tropical entropy is a piecewise constant function and the system has energy for which tropical Gibbs probability has maximum. Properties of systems in the points of jump of entropy are studied. Systems with finite and infinitely many energy levels and phenomena of limiting temperatures are discussed.
Geometry of hypersurfaces defined by the relation which generalizes classical formula for free energy in terms of microstates is studied. Induced metric, Riemann curvature tensor, Gauss-Kronecker curvature and associated entropy are calculated. Speci
The probability that a point is to one side of a curve in Schramm-Loewner evolution (SLE) can be obtained alternatively using boundary conformal field theory (BCFT). We extend the BCFT approach to treat two curves, forming, for example, the left and
In this paper, we consider the problem of minimizing quantum free energies under the constraint that the density of particles is fixed at each point of Rd, for any d $ge$ 1. We are more particularly interested in the characterization of the minimizer
We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterer
Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of ind