ﻻ يوجد ملخص باللغة العربية
The probability that a point is to one side of a curve in Schramm-Loewner evolution (SLE) can be obtained alternatively using boundary conformal field theory (BCFT). We extend the BCFT approach to treat two curves, forming, for example, the left and right boundaries of a cluster. This proves to correspond to a generalisation to SLE(kappa,rho), with rho=2. We derive the probabilities that a given point lies between two curves or to one side of both. We find analytic solutions for the cases kappa=0,2,4,8/3,8. The result for kappa=6 leads to predictions for the current distribution at the plateau transition in the semiclassical approximation to the quantum Hall effect.
Based on the results published recently [J. Phys. A: Math. Theor. 50, 065201 (2017)], the universal finite-size contributions to the free energy of the square lattice Ising model on the $Ltimes M$ rectangle, with open boundary conditions in both dire
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large dev
In planar lattice statistical mechanics models like coupled Ising with quartic interactions, vertex and dimer models, the exponents depend on all the Hamiltonian details. This corresponds, in the Renormalization Group language, to a line of fixed poi
In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-