ﻻ يوجد ملخص باللغة العربية
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We demonstrate our method in simulations and for the application of modeling senate voting records.
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which sugg
We provide high-probability sample complexity guarantees for exact structure recovery and accurate predictive learning using noise-corrupted samples from an acyclic (tree-shaped) graphical model. The hidden variables follow a tree-structured Ising mo
We present a new family of zero-field Ising models over $N$ binary variables/spins obtained by consecutive gluing of planar and $O(1)$-sized components and subsets of at most three vertices into a tree. The polynomial-time algorithm of the dynamic pr
We study infinite ``$+$ or ``$-$ clusters for an Ising model on an connected, transitive, non-amenable, planar, one-ended graph $G$ with finite vertex degree. If the critical percolation probability $p_c^{site}$ for the i.i.d.~Bernoulli site percolat
Promising results have driven a recent surge of interest in continuous optimization methods for Bayesian network structure learning from observational data. However, there are theoretical limitations on the identifiability of underlying structures ob