ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Planar Ising Models

175   0   0.0 ( 0 )
 نشر من قبل Jason Johnson Dr.
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We demonstrate our method in some simulations and for the application of modeling senate voting records.



قيم البحث

اقرأ أيضاً

Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which sugg ests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We demonstrate our method in simulations and for the application of modeling senate voting records.
We provide high-probability sample complexity guarantees for exact structure recovery and accurate predictive learning using noise-corrupted samples from an acyclic (tree-shaped) graphical model. The hidden variables follow a tree-structured Ising mo del distribution, whereas the observable variables are generated by a binary symmetric channel taking the hidden variables as its input (flipping each bit independently with some constant probability $qin [0,1/2)$). In the absence of noise, predictive learning on Ising models was recently studied by Bresler and Karzand (2020); this paper quantifies how noise in the hidden model impacts the tasks of structure recovery and marginal distribution estimation by proving upper and lower bounds on the sample complexity. Our results generalize state-of-the-art bounds reported in prior work, and they exactly recover the noiseless case ($q=0$). In fact, for any tree with $p$ vertices and probability of incorrect recovery $delta>0$, the sufficient number of samples remains logarithmic as in the noiseless case, i.e., $mathcal{O}(log(p/delta))$, while the dependence on $q$ is $mathcal{O}big( 1/(1-2q)^{4} big)$, for both aforementioned tasks. We also present a new equivalent of Isserlis Theorem for sign-valued tree-structured distributions, yielding a new low-complexity algorithm for higher-order moment estimation.
Promising results have driven a recent surge of interest in continuous optimization methods for Bayesian network structure learning from observational data. However, there are theoretical limitations on the identifiability of underlying structures ob tained from observational data alone. Interventional data provides much richer information about the underlying data-generating process. However, the extension and application of methods designed for observational data to include interventions is not straightforward and remains an open problem. In this paper we provide a general framework based on continuous optimization and neural networks to create models for the combination of observational and interventional data. The proposed method is even applicable in the challenging and realistic case that the identity of the intervened upon variable is unknown. We examine the proposed method in the setting of graph recovery both de novo and from a partially-known edge set. We establish strong benchmark results on several structure learning tasks, including structure recovery of both synthetic graphs as well as standard graphs from the Bayesian Network Repository.
Single Index Models (SIMs) are simple yet flexible semi-parametric models for machine learning, where the response variable is modeled as a monotonic function of a linear combination of features. Estimation in this context requires learning both the feature weights and the nonlinear function that relates features to observations. While methods have been described to learn SIMs in the low dimensional regime, a method that can efficiently learn SIMs in high dimensions, and under general structural assumptions, has not been forthcoming. In this paper, we propose computationally efficient algorithms for SIM inference in high dimensions with structural constraints. Our general approach specializes to sparsity, group sparsity, and low-rank assumptions among others. Experiments show that the proposed method enjoys superior predictive performance when compared to generalized linear models, and achieves results comparable to or better than single layer feedforward neural networks with significantly less computational cost.
We present a new family of zero-field Ising models over $N$ binary variables/spins obtained by consecutive gluing of planar and $O(1)$-sized components and subsets of at most three vertices into a tree. The polynomial-time algorithm of the dynamic pr ogramming type for solving exact inference (computing partition function) and exact sampling (generating i.i.d. samples) consists in a sequential application of an efficient (for planar) or brute-force (for $O(1)$-sized) inference and sampling to the components as a black box. To illustrate the utility of the new family of tractable graphical models, we first build a polynomial algorithm for inference and sampling of zero-field Ising models over $K_{3,3}$-minor-free topologies and over $K_{5}$-minor-free topologies -- both are extensions of the planar zero-field Ising models -- which are neither genus - nor treewidth-bounded. Second, we demonstrate empirically an improvement in the approximation quality of the NP-hard problem of inference over the square-grid Ising model in a node-dependent non-zero magnetic field.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا