ﻻ يوجد ملخص باللغة العربية
We present a new family of zero-field Ising models over $N$ binary variables/spins obtained by consecutive gluing of planar and $O(1)$-sized components and subsets of at most three vertices into a tree. The polynomial-time algorithm of the dynamic programming type for solving exact inference (computing partition function) and exact sampling (generating i.i.d. samples) consists in a sequential application of an efficient (for planar) or brute-force (for $O(1)$-sized) inference and sampling to the components as a black box. To illustrate the utility of the new family of tractable graphical models, we first build a polynomial algorithm for inference and sampling of zero-field Ising models over $K_{3,3}$-minor-free topologies and over $K_{5}$-minor-free topologies -- both are extensions of the planar zero-field Ising models -- which are neither genus - nor treewidth-bounded. Second, we demonstrate empirically an improvement in the approximation quality of the NP-hard problem of inference over the square-grid Ising model in a node-dependent non-zero magnetic field.
A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing t
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which sugg
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which sugg
Finding the best model that describes a high dimensional dataset, is a daunting task. For binary data, we show that this becomes feasible, if the search is restricted to simple models. These models -- that we call Minimally Complex Models (MCMs) -- a
We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families of graphs. The input consists of a node-weighted undirected graph $G=(V,E)$ and integer connectivity requirements $r(uv)$ for each unordered pair of