ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial Schauder estimates for second-order elliptic and parabolic equations: a revisit

256   0   0.0 ( 0 )
 نشر من قبل Seick Kim
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Under various conditions, we establish Schauder estimates for both divergence and non-divergence form second-order elliptic and parabolic equations involving Holder semi-norms not with respect to all, but only with respect to some of the independent variables. A novelty of our results is that the coefficients are allowed to be merely measurable with respect to the other independent variables.



قيم البحث

اقرأ أيضاً

153 - Guangying Lv , Jinlong Wei 2019
In this note, we use the non-homogeneous Poisson stochastic process to show how knowing Schauder and Sobolev estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs. The method is probability. We generalize the result of Krylov-Priola [7].
128 - Hongjie Dong , Tianling Jin , 2017
We obtain Dini and Schauder type estimates for concave fully nonlinear nonlocal parabolic equations of order $sigmain (0,2)$ with rough and non-symmetric kernels, and drift terms. We also study such linear equations with only measurable coefficients in the time variable, and obtain Dini type estimates in the spacial variable. This is a continuation of the work [10, 11] by the first and last authors.
137 - Hongjie Dong , N.V. Krylov 2009
The solvability in Sobolev spaces $W^{1,2}_p$ is proved for nondivergence form second order parabolic equations for $p>2$ close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, a nd almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the $W^{2}_p$-solvability for the same $p$ of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when $p=2$.
77 - Yuxing Wang , Kai Du 2019
In this paper we consider the Cauchy problem for $2m$-order stochastic partial differential equations of parabolic type in a class of stochastic Hoelder spaces. The Hoelder estimates of solutions and their spatial derivatives up to order $2m$ are obt ained, based on which the existence and uniqueness of solution is proved. An interesting finding of this paper is that the regularity of solutions relies on a coercivity condition that differs when $m$ is odd or even: the condition for odd $m$ coincides with the standard parabolicity condition in the literature for higher-order stochastic partial differential equations, while for even $m$ it depends on the integrability index $p$. The sharpness of the new-found coercivity condition is demonstrated by an example.
78 - Hongjie Dong , Doyoon Kim 2016
We prove generalized Fefferman-Stein type theorems on sharp functions with $A_p$ weights in spaces of homogeneous type with either finite or infinite underlying measure. We then apply these results to establish mixed-norm weighted $L_p$-estimates for elliptic and parabolic equations/systems with (partially) BMO coefficients in regular or irregular domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا