ترغب بنشر مسار تعليمي؟ اضغط هنا

Schauder and Sobolev Estimates of Parabolic Equations

154   0   0.0 ( 0 )
 نشر من قبل Guangying Lv
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we use the non-homogeneous Poisson stochastic process to show how knowing Schauder and Sobolev estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs. The method is probability. We generalize the result of Krylov-Priola [7].



قيم البحث

اقرأ أيضاً

256 - Hongjie Dong , Seick Kim 2015
Under various conditions, we establish Schauder estimates for both divergence and non-divergence form second-order elliptic and parabolic equations involving Holder semi-norms not with respect to all, but only with respect to some of the independent variables. A novelty of our results is that the coefficients are allowed to be merely measurable with respect to the other independent variables.
128 - Hongjie Dong , Tianling Jin , 2017
We obtain Dini and Schauder type estimates for concave fully nonlinear nonlocal parabolic equations of order $sigmain (0,2)$ with rough and non-symmetric kernels, and drift terms. We also study such linear equations with only measurable coefficients in the time variable, and obtain Dini type estimates in the spacial variable. This is a continuation of the work [10, 11] by the first and last authors.
200 - Hongjie Dong , Yanze Liu 2021
We obtain $L_p$ estimates for fractional parabolic equations with space-time non-local operators $$ partial_t^alpha u - Lu= f quad mathrm{in} quad (0,T) times mathbb{R}^d,$$ where $partial_t^alpha u$ is the Caputo fractional derivative of order $alph a in (0,1]$, $Tin (0,infty)$, and $$Lu(t,x) := int_{ mathbb{R}^d} bigg( u(t,x+y)-u(t,x) - ycdot abla_xu(t,x)chi^{(sigma)}(y)bigg)K(t,x,y),dy $$ is an integro-differential operator in the spatial variables. Here we do not impose any regularity assumption on the kernel $K$ with respect to $t$ and $y$. We also derive a weighted mixed-norm estimate for the equations with operators that are local in time, i.e., $alpha = 1$, which extend the previous results by using a quite different method.
123 - Hongjie Dong , Doyoon Kim 2021
We consider time fractional parabolic equations in both divergence and non-divergence form when the leading coefficients $a^{ij}$ are measurable functions of $(t,x_1)$ except for $a^{11}$ which is a measurable function of either $t$ or $x_1$. We obta in the solvability in Sobolev spaces of the equations in the whole space, on a half space, or on a partially bounded domain. The proofs use a level set argument, a scaling argument, and embeddings in fractional parabolic Sobolev spaces for which we give a direct and elementary proof.
For a class of divergence type quasi-linear degenerate parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via nonlinear Wolff potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا