ترغب بنشر مسار تعليمي؟ اضغط هنا

Second-order elliptic and parabolic equations with $B(mathbb R^{2}, VMO)$ coefficients

137   0   0.0 ( 0 )
 نشر من قبل Hongjie Dong
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The solvability in Sobolev spaces $W^{1,2}_p$ is proved for nondivergence form second order parabolic equations for $p>2$ close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, and almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the $W^{2}_p$-solvability for the same $p$ of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when $p=2$.



قيم البحث

اقرأ أيضاً

154 - N.V. Krylov 2008
The solvability in $W^{2}_{p}(bR^{d})$ spaces is proved for second-order elliptic equations with coefficients which are measurable in one direction and VMO in the orthogonal directions in each small ball with the direction depending on the ball. This generalizes to a very large extent the case of equations with continuous or VMO coefficients.
144 - N.V. Krylov , E. Priola 2008
We consider a second-order parabolic equation in $bR^{d+1}$ with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Holder continuous in the space variables. We show that g lobal Schauder estimates hold even in this case. The proof introduces a new localization procedure. Our results show that the constant appearing in the classical Schauder estimates is in fact independent of the $L_{infty}$-norms of the lower order coefficients. We also give a proof of uniqueness which is of independent interest even in the case of bounded coefficients.
150 - Hongjie Dong 2008
We prove the $W^{1,2}_{p}$-solvability of second order parabolic equations in nondivergence form in the whole space for $pin (1,infty)$. The leading coefficients are assumed to be measurable in one spatial direction and have vanishing mean oscillatio n (VMO) in the orthogonal directions and the time variable in each small parabolic cylinder with the direction depending on the cylinder. This extends a recent result by Krylov [17] for elliptic equations and removes the restriction that $p>2$.
68 - Seick Kim , Longjuan Xu 2020
We construct Greens functions for second order parabolic operators of the form $Pu=partial_t u-{rm div}({bf A} abla u+ boldsymbol{b}u)+ boldsymbol{c} cdot abla u+du$ in $(-infty, infty) times Omega$, where $Omega$ is an open connected set in $mathb b{R}^n$. It is not necessary that $Omega$ to be bounded and $Omega = mathbb{R}^n$ is not excluded. We assume that the leading coefficients $bf A$ are bounded and measurable and the lower order coefficients $boldsymbol{b}$, $boldsymbol{c}$, and $d$ belong to critical mixed norm Lebesgue spaces and satisfy the conditions $d-{rm div} boldsymbol{b} ge 0$ and ${rm div}(boldsymbol{b}-boldsymbol{c}) ge 0$. We show that the Greens function has the Gaussian bound in the entire $(-infty, infty) times Omega$.
237 - N.V. Krylov 2020
We consider elliptic equations with operators $L=a^{ij}D_{ij}+b^{i}D_{i}-c$ with $a$ being almost in VMO, $bin L_{d}$ and $cin L_{q}$, $cgeq0$, $d>qgeq d/2$. We prove the solvability of $Lu=fin L_{p}$ in bounded $C^{1,1}$-domains, $1<pleq q$, and of $lambda u-Lu=f$ in the whole space for any $lambda>0$. Weak uniqueness of the martingale problem associated with such operators is also obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا