ﻻ يوجد ملخص باللغة العربية
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instability is studied analytically and the results are compared with direct, initial value numerical simulations.
The ion beam bunching in a cascaded target normal sheath acceleration is investigated by theoretical analysis and particle-in-cell simulations. It is found that a proton beam can be accelerated and bunched simultaneously by injecting it into the risi
We present the first observation of instability in weakly magnetized, pressure dominated plasma Couette flow firmly in the Hall regime. Strong Hall currents couple to a low frequency electromagnetic mode that is driven by high-$beta$ ($>1$) pressure
The performance of direct-drive inertial confinement fusion implosions relies critically on the coupling of laser energy to the target plasma. Cross-beam energy transfer (CBET), the resonant exchange of energy between intersecting laser beams mediate
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon pea
The fast beam-ion instability (FII) is caused by the interaction of an electron bunch train with the residual gas ions. The ion oscillations in the potential well of the electron beam have an inherent frequency spread due to the nonlinear profile of