ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion beam bunching via phase rotation in cascading laser-driven ion acceleration

447   0   0.0 ( 0 )
 نشر من قبل Suming Weng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ion beam bunching in a cascaded target normal sheath acceleration is investigated by theoretical analysis and particle-in-cell simulations. It is found that a proton beam can be accelerated and bunched simultaneously by injecting it into the rising sheath field at the rear side of a laser-irradiated foil target. In the rising sheath field, the ion phase rotation may take place since the back-end protons of the beam feels a stronger field than the front-end protons. Consequently, the injected proton beam can be compressed in the longitudinal direction. At last, the vital role of the ion beam bunching is illustrated by the integrated simulations of two successive stages in a cascaded acceleration.



قيم البحث

اقرأ أيضاً

Laser-ion acceleration with ultra-short pulse, PW-class lasers is dominated by non-thermal, intra-pulse plasma dynamics. The presence of multiple ion species or multiple charge states in targets leads to characteristic modulations and even mono-energ etic features, depending on the choice of target material. As spectral signatures of generated ion beams are frequently used to characterize underlying acceleration mechanisms, thermal, multi-fluid descriptions require a revision for predictive capabilities and control in next-generation particle beam sources. We present an analytical model with explicit inter-species interactions, supported by extensive ab initio simulations. This enables us to derive important ensemble properties from the spectral distribution resulting from those multi-species effects for arbitrary mixtures. We further propose a potential experimental implementation with a novel cryogenic target, delivering jets with variable mixtures of hydrogen and deuterium. Free from contaminants and without strong influence of hardly controllable processes such as ionization dynamics, this would allow a systematic realization of our predictions for the multi-species effect.
Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported on in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For PW-class lasers, this acceleration regime provides favorable scaling of maximum ion energy with laser power for optimized interaction parameters. The mega Tesla-level magnetic fields generated by the laser-driven co-axial plasma structure in the target are prerequisite for accelerating protons to the energy of several hundred MeV.
136 - T. Nakamura , Y. Fukuda , A. Yogo 2008
Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are acce lerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets are presented.
A new diagnosis method for high energy ions utilizing a single CR-39 detector mounted on plastic plates is demonstrated to identify the presence of the high energy component beyond the CR-39s detection threshold limit. On irradiation of the CR-39 det ector unit with a 25 MeV per nucleon He ion beam from conventional rf-accelerators, a large number of etch pits having elliptical opening shapes are observed on the rear surface of the CR-39. Detailed investigations reveal that these etch pits are created by heavy ions inelastically backscattered from the plastic plates. This ion detection method is applied to laser-driven ion acceleration experiments using cluster-gas targets, and ion signals with energies up to 50 MeV per nucleon are identified.
125 - A. Yogo , K. Mima , N. Iwata 2016
Using a kilojoule class laser, we demonstrate for the first time that high-contrast picosecond pulses are advantageous for ion acceleration. We show that a laser pulse with optimum duration and a large focal spot accelerates electrons beyond the pond eromotive energy. This anomalous electron heating enables efficient ion acceleration reaching 52 MeV at an intensity of 1.2X10^19 Wcm^-2. The proton energy observed agrees quantitatively with a one-dimensional plasma expansion model newly developed by taking the anomalous heating effect into account. The heating process is confirmed by both measurements with an electron spectrometer and a one-dimensional particle-in-cell simulation. By extending the pulse duration to 6 ps, 5% energy conversion efficiency to protons (50 J out of 1 kJ laser energy) is achieved with an intensity of 10^18-Wcm^-2. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا