ﻻ يوجد ملخص باللغة العربية
The performance of direct-drive inertial confinement fusion implosions relies critically on the coupling of laser energy to the target plasma. Cross-beam energy transfer (CBET), the resonant exchange of energy between intersecting laser beams mediated by ponderomotively driven ion-acoustic waves (IAW), inhibits this coupling by scattering light into unwanted directions. The variety of beam intersection angles and varying plasma conditions in an implosion results in IAWs with a range of phase velocities. Here we show that CBET saturates through a resonance detuning that depends on the IAW phase velocity and that results from trapping-induced modifications to the ion distribution functions. For smaller phase velocities, the modifications to the distribution functions can rapidly thermalize in the presence of mid-Z ions, leading to a blueshift in the resonant frequency. For larger phase velocities, the modifications can persist, leading to a redshift in the resonant frequency. Ultimately, these results may reveal pathways towards CBET mitigation and inform reduced models for radiation hydrodynamics codes to improve their predictive capability.
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes.
Motivated by recent advances in laboratory experiments on parallel ion-beam instabilities, we present a theoretical framework for and simulations of their evolution towards shock formation and Fermi acceleration. After reviewing the theory of beam in
Heavy ion inertial fusion (HIF) energy would be one of promising energy resources securing our future energy in order to sustain our human life for centuries and beyond. The heavy ion beam (HIB) has remarkable preferable features to release the fusio
Compound ion distributions, fi(v), have been measured by NASAs Magnetospheric Multi-Scale Mission (MMS) and have been found in reconnection simulations. A complex distribution, fi(v), consisting, for example, of essentially disjoint pieces will be ca
It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wav