ﻻ يوجد ملخص باللغة العربية
Using an advanced version of the hadron resonance gas model we have found indications for irregularities in data for hadrons produced in relativistic heavy-ion collisions. These include an abrupt change of the effective number of degrees of freedom, a change of the slope of the ratio of lambda hyperons to protons at laboratory energies 8.6--11.6 AGeV, as well as highly correlated plateaus in the collision-energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon at laboratory energies 6.9-11.6 AGeV. Also, we observe a sharp peak in the dimensionless trace anomaly at a laboratory energy of 11.6 AGeV. On the basis of the generalized shock-adiabat model we demonstrate that these observations give evidence for the anomalous thermodynamic properties of the mixed phase at its boundary to the quark-gluon plasma. We argue that the trace-anomaly peak and the local minimum of the generalized specific volume observed at a laboratory energy of 11.6 AGeV provide a signal for the formation of a mixed phase between the quark-gluon plasma and the hadron phase. This naturally explains the change of slope in the energy dependence of the yield of lambda hyperons per proton at a laboratory energy of 8.6 GeV.
Using the most advanced model of the hadron resonance gas we reveal, at chemical freeze-out, remarkable irregularities such as an abrupt change of the effective number of degrees of freedom and plateaus in the collision-energy dependence of the entro
Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out a
The chemical freeze-out irregularities found with the most advanced hadron resonance gas model and possible signals of two QCD phase transitions are discussed. We found that the center-of-mass collision energy range of tricritical endpoint of QCD pha
We believe that one can have serious reservations as to whether heavy ion collisions (e.g. 100 GeV/n Au + 100 GeV/n Au) can lead to Thermal and Chemical equilibrium over large regions (particularly if it is assumed this happens whenever QGP is produc
The performed systematic meta-analysis of the quality of data description (QDD) of existing event generators of nucleus-nucleus collisions allows us to extract a very important physical information. Our meta-analysis is dealing with the results of 10