ﻻ يوجد ملخص باللغة العربية
Using the most advanced model of the hadron resonance gas we reveal, at chemical freeze-out, remarkable irregularities such as an abrupt change of the effective number of degrees of freedom and plateaus in the collision-energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon at laboratory energies 6.9-11.6 AGeV. On the basis of the generalized shock adiabat model we show that these plateaus give evidence for the thermodynamic anomalous properties of the mixed phase at its boundary to the quark-gluon plasma (QGP). A new signal for QGP formation is suggested and justified.
Using an advanced version of the hadron resonance gas model we have found indications for irregularities in data for hadrons produced in relativistic heavy-ion collisions. These include an abrupt change of the effective number of degrees of freedom,
It is argued that the experimentally observed baryon stopping indicates a non-monotonous behaviour as a function of the incident energy of colliding nuclei. This can be quantified by a midrapidity reduced curvature of the net-proton rapidity spectrum
Assuming the Lorentz and CPT invariances we show that neutron-antineutron oscillation implies breaking of CP along with baryon number violation -- i.e. two of Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator in
The detected anomalous frequency drift acceleration in Pioneers radar data finds its explanation in a Berry phase that obtains the quantum state of a photon that propagates within an expanding space-time. The clock acceleration is just the adiabatic
Contrary to common expectation, a left-sneutrinos can occasionally be the lightest supersymmet- ric particle. This has important implications in both collider and dark matter studies. We show that same-sign tri-lepton (SS3L) events at the Large Hadro