ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible evidence of the hadron-quark-gluon mixed phase formation in nuclear collisions

229   0   0.0 ( 0 )
 نشر من قبل Kyrill Bugaev
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The performed systematic meta-analysis of the quality of data description (QDD) of existing event generators of nucleus-nucleus collisions allows us to extract a very important physical information. Our meta-analysis is dealing with the results of 10 event generators which describe data measured in the range of center of mass collision energies from 3.1 GeV to 17.3 GeV. It considers the mean deviation squared per number of experimental points obtained by these event generators, i.e. the QDD, as the results of independent meta-measurements. These generators and their QDDs are divided in two groups. The first group includes the generators which account for the quark-gluon plasma formation during nuclear collisions (QGP models), while the second group includes the generators which do not assume the QGP formation in such collisions (hadron gas models). Comparing the QDD of more than a hundred of different data sets of strange hadrons by two groups of models, we found two regions of the equal quality description of data which are located at the center of mass collision energies 4.4-4.87 GeV and 10.8-12 GeV. At the collision energies below 4.4 GeV the hadron gas models describe data much better than the QGP one and, hence, we associate this region with hadron phase. At the collision energies between 5 GeV and 10.8 GeV and above 12 GeV we found that QGP models describe data essentially better than the hadron gas ones and, hence, these regions we associate with the quark-gluon phase. As a result, the collision energy regions 4.4-4.87 GeV and 10.8-12 GeV we interpret as the energies of the hadron-quark-gluon mixed phase formation. Based on these findings we argue that the most probable energy range of the QCD phase diagram (tri)critical endpoint is 12-14 GeV.



قيم البحث

اقرأ أيضاً

We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the appropriate energy dens ities (or baryon densities) and temperatures are reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh$-$Plesset equation which governs the dynamics of a relativistic spherical bubble in a strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.
Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out a t the center of mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center of mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations.
We investigate systematically the quark-hadron mixed phase in dense stellar matter, and its influence on compact star structures. The properties of quark matter and hadronic matter are fixed based on various model predictions. Beside adopting constan t values, the surface tension $Sigma$ for the quark-hadron interface is estimated with the multiple reflection expansion method and equivparticle model. To fix the structures of quark-hadron pasta phases, a continuous dimensionality of the structure is adopted as proposed by Ravenhall, Pethick, and Wilson. The corresponding properties of hybrid stars are then obtained and confronted with pulsar observations. It is found that the correlation between radius and tidal deformability in traditional neutron stars preserves in hybrid stars. For those permitted by pulsar observations, in almost all cases the quark phase persists inside the most massive compact stars. The quark-hadron interface plays an important role on hybrid star structures once quark matter emerges. The surface tension $Sigma$ estimated with various methods increases with density, which predicts stiffer EOSs for the quark-hadron mixed phase and increases the maximum mass of hybrid stars. The EOSs of hybrid star matter are well constrained at densities $nlesssim 0.8$ fm${}^{-3}$, while larger uncertainty is expected at higher densities.
We study the hadron-quark phase transition in the interior of hot protoneutron stars, combining the Brueckner-Hartree-Fock approach for hadronic matter with the MIT bag model or the Dyson-Schwinger model for quark matter. We examine the structure of the mixed phase constructed according to different prescriptions for the phase transition, and the resulting consequences for stellar properties. We find important effects for the internal composition, but only very small influence on the global stellar properties.
The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا