ترغب بنشر مسار تعليمي؟ اضغط هنا

GeV-scale dark matter: production at the Main Injector

167   0   0.0 ( 0 )
 نشر من قبل Claudia Frugiuele
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a $Z$ boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NO$ u$A detector is well positioned for probing the presence of a dark matter beam, while future LBNF near-detectors would provide more sensitive probes.



قيم البحث

اقرأ أيضاً

We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section d ependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $alpha$ is $0.46pm0.06$ for a beam momentum of 58 GeV/c and 0.54$pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.
193 - D.J. Scott , D. Capista , B. Chase 2013
For Project X, it is planned to inject a beam of 3 10**11 particles per bunch into the Main Injector. To prepare for this by studying the effects of higher intensity bunches in the Main Injector it is necessary to perform coalescing at 8 GeV. The res ults of a series of experiments and simulations of 8 GeV coalescing are presented. To increase the coalescing efficiency adiabatic reduction of the 53 MHz RF is required, resulting in ~70% coalescing efficiency of 5 initial bunches. Data using wall current monitors has been taken to compare previous work and new simulations for 53 MHz RF reduction, bunch rotations and coalescing, good agreement between experiment and simulation was found. Possible schemes to increase the coalescing efficiency and generate even higher intensity bunches are discussed. These require improving the timing resolution of the low level RF and/or tuning the adiabatic voltage reduction of the 53 MHz.
The sensitivity of direct detection of dark matter (DM) approaches the so-called neutrino floor below which it is hard to disentangle the DM candidate from the background neutrino. In this work we consider the scenario that no DM signals are reported in various DM direct detection experiments and explore whether the collider searches could probe the DM under the neutrino floor. We adopt several simplified models in which the DM candidate couples only to electroweak gauge bosons or leptons in the standard model through high dimensional operators. After including the RGE running effect we investigate constraints from direct detection, indirect detection and collider searches. The collider search can probe a light DM below neutrino floor. Especially, for the effective interaction of $bar{chi}chi B_{mu u}B^{mu u}$, current data of the mono-photon channel at the 13 TeV LHC has already covered entire parameter space of the neutrino floor.
We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a longitudinal plasmon mode emitted instead . For dark matter in the 10 MeV - 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4-5 orders of magnitude smaller than that for elastic scattering, but 4-5 orders of magnitude larger than the transverse bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has characteristic energy given by the plasma frequency $omega_p$, with $omega_p approx 16$ eV in Si crystals, plasmon production provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.
We analyze the sensitivity of fixed-target experiments to sub-GeV thermal relic dark matter models, accounting for variations in both mediator and dark matter mass, and including dark matter production through both on- and off-shell mediators. It is commonly thought that the sensitivity of such experiments is predicated on the existence of an on-shell mediator that is produced and then decays to dark matter. While accelerators do provide a unique opportunity to probe the mediator directly, our analysis demonstrates that their sensitivity extends beyond this commonly discussed regime. In particular, we provide sensitivity calculations that extend into both the effective field theory regime where the mediator is much heavier than the dark matter and the regime of an off-shell mediator lighter than a dark matter particle-antiparticle pair. Our calculations also elucidate the resonance regime, making it clear that all but a fine-tuned region of thermal freeze-out parameter space for a range of simple models is well covered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا