ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward Neutron Production at the Fermilab Main Injector

484   0   0.0 ( 0 )
 نشر من قبل Michael J. Longo
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $alpha$ is $0.46pm0.06$ for a beam momentum of 58 GeV/c and 0.54$pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.



قيم البحث

اقرأ أيضاً

High statistics data for the K+ -> mu+ nu gamma decay can allow the precision determination of the kaon structure dependent form factors and the kaon polarizability. This study is possible at the proposed FNAL CKM experiment. CKM (Charged Kaons at the Main injector) is a decay-in-flight spectrometer with two RICH, and designed to run at the main injector with a high kaon flux. The radiative decay data will be taken complementary to the primary CKM effort to study the rare kaon decay (K to pi nu nubar) for which CKM was primarily designed. We summarize here the underlying physics of K ->mu nu gamma, the experimental status, and how the CKM spectrometer will be adapted for this study.
The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. It measures particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams of $pi^{pm}, r m{K}^{pm}$, p and $bar{rm{p}}$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (CKOV), Ring Imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. We present inelastic cross section measurements for 58 and 85 GeV/c p-H interactions, and 58 and 120 GeV/c p-C interactions. A new method is described to account for the low multiplicity inefficiencies in the interaction trigger using KNO scaling. Inelastic cross sections as a function of multiplicity are also presented. The MIPP data are compared with the Monte Carlo predictions and previous measurements. We also describe an algorithm to identify charged particles ($pi^{pm}/rm{p}/bar{rm{p}}$ etc.), and present the charged pion and kaon spectra from the interactions of 120 GeV/c protons with carbon target.
159 - D.J. Scott , D. Capista , B. Chase 2013
For Project X, it is planned to inject a beam of 3 10**11 particles per bunch into the Main Injector. To prepare for this by studying the effects of higher intensity bunches in the Main Injector it is necessary to perform coalescing at 8 GeV. The res ults of a series of experiments and simulations of 8 GeV coalescing are presented. To increase the coalescing efficiency adiabatic reduction of the 53 MHz RF is required, resulting in ~70% coalescing efficiency of 5 initial bunches. Data using wall current monitors has been taken to compare previous work and new simulations for 53 MHz RF reduction, bunch rotations and coalescing, good agreement between experiment and simulation was found. Possible schemes to increase the coalescing efficiency and generate even higher intensity bunches are discussed. These require improving the timing resolution of the low level RF and/or tuning the adiabatic voltage reduction of the 53 MHz.
148 - Sergei Nagaitsev 2014
At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, the Accumulator and the Recycler), 25 independent multi-GHz stochastic cooli ng systems, the worlds only relativistic electron cooling system and a team of technical experts equal to none. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II, neutrino experiments using 8-GeV and 120-GeV proton beams, as well as a test beam facility and other fixed target experiments using 120-GeV primary proton beams. This paper provides a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).
Assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distributi on peaked at higher values than the neutrino background. We find that for a $Z$ boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NO$ u$A detector is well positioned for probing the presence of a dark matter beam, while future LBNF near-detectors would provide more sensitive probes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا