ﻻ يوجد ملخص باللغة العربية
We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV - 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4-5 orders of magnitude smaller than that for elastic scattering, but 4-5 orders of magnitude larger than the transverse bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has characteristic energy given by the plasma frequency $omega_p$, with $omega_p approx 16$ eV in Si crystals, plasmon production provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.
We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-inter
Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered smoking gun evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter spa
We consider Dark Matter composed of an oscillating singlet scalar field. On top of the mass term, the scalar is equipped with a potential spontaneously breaking Z_2-symmetry. This potential dominates at early times and leads to the time-dependent exp
We present a scenario of vector dark matter production from symmetry breaking at the end of inflation. In this model, the accumulated energy density associated with the quantum fluctuations of the dark photon accounts for the present energy density o
We introduce a model in which the genesis of dark matter (DM) and neutrino masses is associated with a first order phase transition of a scalar singlet field. During the phase transition a source right-handed neutrino (RHN) acquires a spacetime-depen