ﻻ يوجد ملخص باللغة العربية
We analytically and numerically clarify the physical origin and the behaviour of the Norton-wave scattered by a narrow slit, at optical frequencies. This apparently surface field, which comes in addition to the surface plasmon polariton and classical cylindrical lightwaves, features its own scattering lobe associated to oscillating induced currents extending within both horizontal metal parts forming the slit. Theory is given taking into account the finite size of the aperture.
In this paper we show that graphene surface plasmons can be excited when an electromagnetic wave packet impinges on a single metal slit covered with graphene. The excitation of the plasmons localized over the slit is revealed by characteristic peaks
The exciting discovery of bi-dimensional systems in condensed matter physics has triggered the search of their photonic analogues. In this letter, we describe a general scheme to reproduce some of the systems ruled by a tight-binding Hamiltonian in a
We show that interference can be the principle of operation of an all-optical switch and other nanoscale plasmonic interference devices (PIDs). The optical response of two types of planar plasmonic waveguides is studied theoretically: bent chains and
An analytical method for diffraction of a plane electromagnetic wave at periodically-modulated graphene sheet is presented. Both interface corrugation and periodical change in the optical conductivity are considered. Explicit expressions for reflecti
We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to produce pyramid-shaped structures with pitch o