ﻻ يوجد ملخص باللغة العربية
We prove the global well-posedness of the so-called hyperbolic relaxation of the Cahn-Hilliard-Oono equation in the whole space R^3 with the non-linearity of the sub-quintic growth rate. Moreover, the dissipativity and the existence of a smooth global attractor in the naturally defined energy space is also verified. The result is crucially based on the Strichartz estimates for the linear Scroedinger equation in R^3.
In this paper, we continue the study of the hyperbolic relaxation of the Cahn-Hilliard-Oono equation with the sub-quintic non-linearity in the whole space $R^3$ started in our previous paper and verify that under the natural assumptions on the non-li
In this paper, we consider the almost sure well-posedness of the Cauchy problem to the Cahn-Hilliard-Navier-Stokes equation with a randomization initial data on a torus $mathbb{T}^3$. First, we prove the local existence and uniqueness of solution. Fu
In this paper we consider the hyperbolic-elliptic Ishimori initial-value problem. We prove that such system is locally well-posed for small data in $H^{s}$ level space, for $s> 3/2$. The new ingredient is that we develop the methods of Ionescu and Ke
In this article, we address the Cauchy problem for the KP-I equation [partial_t u + partial_x^3 u -partial_x^{-1}partial_y^2u + upartial_x u = 0] for functions periodic in $y$. We prove global well-posedness of this problem for any data in the energy
This article is devoted to review the known results on global well-posedness for the Cauchy problem to the Kirchhoff equation and Kirchhoff systems with small data. Similar results will be obtained for the initial-boundary value problems in exterior