ﻻ يوجد ملخص باللغة العربية
In this paper we consider the hyperbolic-elliptic Ishimori initial-value problem. We prove that such system is locally well-posed for small data in $H^{s}$ level space, for $s> 3/2$. The new ingredient is that we develop the methods of Ionescu and Kenig cite{IK} and cite{IK2} to approach the problem in a perturbative way.
Considered herein is a multi-component Novikov equation, which admits bi-Hamiltonian structure, infinitely many conserved quantities and peaked solutions. In this paper, we deduce two blow-up criteria for this system and global existence for some two
We use the dispersive properties of the linear Schr{o}dinger equation to prove local well-posedness results for the Boltzmann equation and the related Boltzmann hierarchy, set in the spatial domain $mathbb{R}^d$ for $dgeq 2$. The proofs are based on
We prove the global well-posedness of the so-called hyperbolic relaxation of the Cahn-Hilliard-Oono equation in the whole space R^3 with the non-linearity of the sub-quintic growth rate. Moreover, the dissipativity and the existence of a smooth globa
Proving local well-posedness for quasilinear problems in pdes presents a number of difficulties, some of which are universal and others of which are more problem specific. While a common standard, going back to Hadamard, has existed for a long time,
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential