ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the almost sure well-posedness of the Cauchy problem to the Cahn-Hilliard-Navier-Stokes equation with a randomization initial data on a torus $mathbb{T}^3$. First, we prove the local existence and uniqueness of solution. Furthermore, we prove the global existence and uniqueness of solution and give the relative probability estimate under the condition of small initial data.
The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated
Using the Maslowski and Seidler method, the existence of invariant measure for 2-dimensional stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise is proved in state space $L_x^2times H^1$, working with the weak topology. Also, t
We prove the global well-posedness of the so-called hyperbolic relaxation of the Cahn-Hilliard-Oono equation in the whole space R^3 with the non-linearity of the sub-quintic growth rate. Moreover, the dissipativity and the existence of a smooth globa
A well-known diffuse interface model for incompressible isothermal mixtures of two immiscible fluids consists of the Navier-Stokes system coupled with a convective Cahn-Hilliard equation. In some recent contributions the standard Cahn-Hilliard equati
We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several r