ﻻ يوجد ملخص باللغة العربية
Complementation of Buchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approaches. Regarding the performance of these approaches, there have been several complexity analyses but very few experimental results. What especially lacks is a comparative experiment on all of the four approaches to see how they perform in practice. In this paper, we review the four approaches, propose several optimization heuristics, and perform comparative experimentation on four representative constructions that are considered the most efficient in each approach. The experimental results show that (1) the determinization-based Safra-Piterman construction outperforms the other three in producing smaller complements and finishing more tasks in the allocated time and (2) the proposed heuristics substantially improve the Safra-Piterman and the slice-based constructions.
Complementation of Buchi automata, required for checking automata containment, is of major theoretical and practical interest in formal verification. We consider two recent approaches to complementation. The first is the rank-based approach of Kupfer
In this work, we exploit the power of emph{unambiguity} for the complementation problem of Buchi automata by utilizing reduced run directed acyclic graphs (DAGs) over infinite words, in which each vertex has at most one predecessor. We then show how
The determinization of Buchi automata is a celebrated problem, with applications in synthesis, probabilistic verification, and multi-agent systems. Since the 1960s, there has been a steady progress of constructions: by McNaughton, Safra, Piterman, Sc
We revisit here congruence relations for Buchi automata, which play a central role in the automata-based verification. The size of the classical congruence relation is in $3^{mathcal{O}(n^2)}$, where $n$ is the number of states of a given Buchi autom
Scenarios, or Message Sequence Charts, offer an intuitive way of describing the desired behaviors of a distributed protocol. In this paper we propose a new way of specifying finite-state protocols using scenarios: we show that it is possible to autom