ﻻ يوجد ملخص باللغة العربية
Complementation of Buchi automata, required for checking automata containment, is of major theoretical and practical interest in formal verification. We consider two recent approaches to complementation. The first is the rank-based approach of Kupferman and Vardi, which operates over a DAG that embodies all runs of the automaton. This approach is based on the observation that the vertices of this DAG can be ranked in a certain way, termed an odd ranking, iff all runs are rejecting. The second is the slice-based approach of Kahler and Wilke. This approach tracks levels of split trees - run trees in which only essential information about the history of each run is maintained. While the slice-based construction is conceptually simple, the complementing automata it generates are exponentially larger than those of the recent rank-based construction of Schewe, and it suffers from the difficulty of symbolically encoding levels of split trees. In this work we reformulate the slice-based approach in terms of run DAGs and preorders over states. In doing so, we begin to draw parallels between the rank-based and slice-based approaches. Through deeper analysis of the slice-based approach, we strongly restrict the nondeterminism it generates. We are then able to employ the slice-based approach to provide a new odd ranking, called a retrospective ranking, that is different from the one provided by Kupferman and Vardi. This new ranking allows us to construct a deterministic-in-the-limit rank-based automaton with a highly restricted transition function. Further, by phrasing the slice-based approach in terms of ranks, our approach affords a simple symbolic encoding and achieves the tight bound of Schewes construction
Complementation of Buchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approache
In this work, we exploit the power of emph{unambiguity} for the complementation problem of Buchi automata by utilizing reduced run directed acyclic graphs (DAGs) over infinite words, in which each vertex has at most one predecessor. We then show how
We revisit here congruence relations for Buchi automata, which play a central role in the automata-based verification. The size of the classical congruence relation is in $3^{mathcal{O}(n^2)}$, where $n$ is the number of states of a given Buchi autom
The determinization of Buchi automata is a celebrated problem, with applications in synthesis, probabilistic verification, and multi-agent systems. Since the 1960s, there has been a steady progress of constructions: by McNaughton, Safra, Piterman, Sc
The search for a proof of correctness and the search for counterexamples (bugs) are complementary aspects of verification. In order to maximize the practical use of verification tools it is better to pursue them at the same time. While this is well-u