ﻻ يوجد ملخص باللغة العربية
Goldreich suggested candidates of one-way functions and pseudorandom generators included in $mathsf{NC}^0$. It is known that randomly generated Goldreichs generator using $(r-1)$-wise independent predicates with $n$ input variables and $m=C n^{r/2}$ output variables is not pseudorandom generator with high probability for sufficiently large constant $C$. Most of the previous works assume that the alphabet is binary and use techniques available only for the binary alphabet. In this paper, we deal with non-binary generalization of Goldreichs generator and derives the tight threshold for linear programming relaxation attack using local marginal polytope for randomly generated Goldreichs generators. We assume that $u(n)in omega(1)cap o(n)$ input variables are known. In that case, we show that when $rge 3$, there is an exact threshold $mu_mathrm{c}(k,r):=binom{k}{r}^{-1}frac{(r-2)^{r-2}}{r(r-1)^{r-1}}$ such that for $m=mufrac{n^{r-1}}{u(n)^{r-2}}$, the LP relaxation can determine linearly many input variables of Goldreichs generator if $mu>mu_mathrm{c}(k,r)$, and that the LP relaxation cannot determine $frac1{r-2} u(n)$ input variables of Goldreichs generator if $mu<mu_mathrm{c}(k,r)$. This paper uses characterization of LP solutions by combinatorial structures called stopping sets on a bipartite graph, which is related to a simple algorithm called peeling algorithm.
Chen, Kitaev, M{u}tze, and Sun recently introduced the notion of universal partial words, a generalization of universal words and de Bruijn sequences. Universal partial words allow for a wild-card character $diamond$, which is a placeholder for any l
In this letter, we consider the Multi-Robot Efficient Search Path Planning (MESPP) problem, where a team of robots is deployed in a graph-represented environment to capture a moving target within a given deadline. We prove this problem to be NP-hard,
Ahlswede and Katona (1977) posed the following isodiametric problem in Hamming spaces: For every $n$ and $1le Mle2^{n}$, determine the minimum average Hamming distance of binary codes with length $n$ and size $M$. Fu, Wei, and Yeung (2001) used linea
Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactl
Recently, Wang et al. [IEEE INFOCOM 2011, 820-828], and Nie et al. [IEEE AINA 2014, 591-596] have proposed two schemes for secure outsourcing of large-scale linear programming (LP). They did not consider the standard form: minimize c^{T}x, subject to