ﻻ يوجد ملخص باللغة العربية
Recently, Wang et al. [IEEE INFOCOM 2011, 820-828], and Nie et al. [IEEE AINA 2014, 591-596] have proposed two schemes for secure outsourcing of large-scale linear programming (LP). They did not consider the standard form: minimize c^{T}x, subject to Ax=b, x>0. Instead, they studied a peculiar form: minimize c^{T}x, subject to Ax = b, Bx>0, where B is a non-singular matrix. In this note, we stress that the proposed peculiar form is unsolvable and meaningless. The two schemes have confused the functional inequality constraints Bx>0 with the nonnegativity constraints x>0 in the linear programming model. But the condition x>0 is indispensable to the simplex method. Therefore, both two schemes failed.
We show that the verifying equations in the scheme [Theoretical Computer Science, 562 (2015), 112-121] cannot filter out some malformed values returned by the malicious servers. We also remark that the two untrusted programs model adopted in the sche
With the support of cloud computing, large quantities of data collected from various WSN applications can be managed efficiently. However, maintaining data security and efficiency of data processing in cloud-WSN (C-WSN) are important and challenging
Discrete exponential operation, such as modular exponentiation and scalar multiplication on elliptic curves, is a basic operation of many public-key cryptosystems. However, the exponential operations are considered prohibitively expensive for resourc
We solve an open question in code-based cryptography by introducing two provably secure group signature schemes from code-based assumptions. Our basic scheme satisfies the CPA-anonymity and traceability requirements in the random oracle model, assumi
In this work, we study how to securely evaluate the value of trading data without requiring a trusted third party. We focus on the important machine learning task of classification. This leads us to propose a provably secure four-round protocol that