ﻻ يوجد ملخص باللغة العربية
Chen, Kitaev, M{u}tze, and Sun recently introduced the notion of universal partial words, a generalization of universal words and de Bruijn sequences. Universal partial words allow for a wild-card character $diamond$, which is a placeholder for any letter in the alphabet. We settle and strengthen conjectures posed in the same paper where this notion was introduced. For non-binary alphabets, we show that universal partial words have periodic $diamond$ structure and are cyclic, and we give number-theoretic conditions on the existence of universal partial words. In addition, we provide an explicit construction for a family of universal partial words over alphabets of even size.
A universal word for a finite alphabet $A$ and some integer $ngeq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A
A word is square-free if it does not contain any square (a word of the form $XX$), and is extremal square-free if it cannot be extended to a new square-free word by inserting a single letter at any position. Grytczuk, Kordulewski, and Niewiadomski pr
Goldreich suggested candidates of one-way functions and pseudorandom generators included in $mathsf{NC}^0$. It is known that randomly generated Goldreichs generator using $(r-1)$-wise independent predicates with $n$ input variables and $m=C n^{r/2}$
A connected digraph in which the in-degree of any vertex equals its out-degree is Eulerian, this baseline result is used as the basis of existence proofs for universal cycles (also known as generalized deBruijn cycles or U-cycles) of several combinat
It is well known that Universal Cycles of $k$-letter words on an $n$-letter alphabet exist for all $k$ and $n$. In this paper, we prove that Universal Cycles exist for restricted classes of words, including: non-bijections, equitable words (under sui