ﻻ يوجد ملخص باللغة العربية
In the past few years, a lot of attention has been devoted to multimedia indexing by fusing multimodal informations. Two kinds of fusion schemes are generally considered: The early fusion and the late fusion. We focus on late classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we investigate a recent and elegant well-founded quadratic program named MinCq coming from the machine learning PAC-Bayesian theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters, leading to the lowest misclassification rate, while maximizing the voters diversity. We propose an extension of MinCq tailored to multimedia indexing. Our method is based on an order-preserving pairwise loss adapted to ranking that allows us to improve Mean Averaged Precision measure while taking into account the diversity of the voters that we want to fuse. We provide evidence that this method is naturally adapted to late fusion procedures and confirm the good behavior of our approach on the challenging PASCAL VOC07 benchmark.
We tackle the issue of classifier combinations when observations have multiple views. Our method jointly learns view-specific weighted majority vote classifiers (i.e. for each view) over a set of base voters, and a second weighted majority vote class
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. H
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira $1992$ on opinion-dependent network or Stauffer-Hohnisch-Pittnauer networks. By Monte Carlo simulations and finite-size scal
The stationary critical properties of the isotropic majority vote model on random lattices with quenched connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical exponents $gamma$ and $beta$ are fou
We present a novel analysis of the expected risk of weighted majority vote in multiclass classification. The analysis takes correlation of predictions by ensemble members into account and provides a bound that is amenable to efficient minimization, w