ترغب بنشر مسار تعليمي؟ اضغط هنا

Majority-vote model on Opinion-Dependent Networks

241   0   0.0 ( 0 )
 نشر من قبل Francisco Lima
 تاريخ النشر 2013
والبحث باللغة English
 تأليف F. W. S. Lima




اسأل ChatGPT حول البحث

We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira $1992$ on opinion-dependent network or Stauffer-Hohnisch-Pittnauer networks. By Monte Carlo simulations and finite-size scaling relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.230(3)$, $gamma/ u=0.535(2)$, and $1/ u=0.475(8)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.166(3)$ and $U^*=0.288(3)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=1$ and the results presented here demonstrate that the majority-vote model belongs to a different universality class than the equilibrium Ising model on Stauffer-Hohnisch-Pittnauer networks, but to the same class as majority-vote models on some other networks.



قيم البحث

اقرأ أيضاً

The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been extensively studied in the context of complex networks. However, the relationship between the critical noise where the order-disorder phase trans ition takes place and the topology of the underlying networks is still lacking. In the paper, we use the heterogeneous mean-field theory to derive the rate equation for governing the models dynamics that can analytically determine the critical noise $f_c$ in the limit of infinite network size $Nrightarrow infty$. The result shows that $f_c$ depends on the ratio of ${leftlangle k rightrangle }$ to ${leftlangle k^{3/2} rightrangle }$, where ${leftlangle k rightrangle }$ and ${leftlangle k^{3/2} rightrangle }$ are the average degree and the $3/2$ order moment of degree distribution, respectively. Furthermore, we consider the finite size effect where the stochastic fluctuation should be involved. To the end, we derive the Langevin equation and obtain the potential of the corresponding Fokker-Planck equation. This allows us to calculate the effective critical noise $f_c(N)$ at which the susceptibility is maximal in finite size networks. We find that the $f_c-f_c(N)$ decays with $N$ in a power-law way and vanishes for $Nrightarrow infty$. All the theoretical results are confirmed by performing the extensive Monte Carlo simulations in random $k$-regular networks, Erdos-Renyi random networks and scale-free networks.
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents ha ve a dependence on the connectivity while the effective dimension $D_mathrm{eff} = 2beta/ u + gamma/ u$ of the lattice is unity. We considered a generalization of the scaling relations in order to include logarithmic corrections. We obtained the leading critical exponent ratios $1/ u$, $beta/ u$, and $gamma/ u$ by finite size scaling data collapses, as well as the logarithmic correction pseudo-exponents $widehat{lambda}$, $widehat{beta}+betawidehat{lambda}$, and $widehat{gamma}-gammawidehat{lambda}$. By comparing the scaling behaviors of the Majority Vote and Biswas-Chatterjee-Sen models, we argue that the exponents of Majority Vote model, in fact, are universal. Therefore, they do not depend on network connectivity. In addition, the critical exponents and the universality class are the same of Biswas-Chatterjee-Sen model, as seen for periodic and random graphs. However, the Majority Vote model has logarithmic corrections on its scaling properties, while Biswas-Chatterjee-Sen model follows usual scaling relations without logarithmic corrections.
200 - F. W. S. Lima 2011
Here, the model of non-equilibrium model with two states ($-1,+1$) and a noise $q$ on simple square lattices proposed for M.J. Oliveira (1992) following the conjecture of up-down symmetry of Grinstein and colleagues (1985) is studied and generalized. This model is well-known, today, as Majority-Vote Model. They showed, through Monte Carlo simulations, that their obtained results fall into the universality class of the equilibrium Ising model on a square lattice. In this work, we generalize the Majority-Vote Model for a version with three states, now including the zero state, ($-1,0,+1$) in two dimensions. Using Monte Carlo simulations, we showed that our model falls into the universality class of the spin-1 ($-1,0,+1$) and spin-1/2 Ising model and also agree with Majority-Vote Model proposed for M.J. Oliveira (1992) . The exponents ratio obtained for our model was $gamma/ u =1.77(3)$, $beta/ u=0.121(5)$, and $1/ u =1.03(5)$. The critical noise obtained and the fourth-order cumulant were $q_{c}=0.106(5)$ and $U^{*}=0.62(3)$.
258 - F. W. S. Lima 2012
Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on Stauffer-Hohnisch-Pittnauer (SHP) networks. To control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the critical noise $q_{c}$ to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.
162 - F. W. S. Lima 2013
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira 1992 with heterogeneous agents on square lattice. By Monte Carlo simulations and finite-size scaling relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.35(1)$, $gamma/ u=1.23(8)$, and $1/ u=1.05(5)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.1589(4)$ and $U^*=0.604(7)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=2$ and the results presented here demonstrate that the majority-vote model heterogeneous agents belongs to a different universality class than the nonequilibrium majority-vote models with homogeneous agents on square lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا