ﻻ يوجد ملخص باللغة العربية
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. Here we propose a non-Markovian Majority-Vote model (NMMV) that introduces non-Markovian effects in the standard (Markovian) Majority-Vote model (SMV). The SMV model is one of the simplest two-state stochastic models for studying opinion dynamics, and displays a continuous order-disorder phase transition at a critical noise. In the NMMV model we assume that the probability that an agent changes state is not only dependent on the majority state of his neighbors but it also depends on his {em age}, i.e. how long the agent has been in his current state. The NMMV model has two regimes: the aging regime implies that the probability that an agent changes state is decreasing with his age, while in the anti-aging regime the probability that an agent changes state is increasing with his age. Interestingly, we find that the critical noise at which we observe the order-disorder phase transition is a non-monotonic function of the rate $beta$ of the aging (anti-aging) process. In particular the critical noise in the aging regime displays a maximum as a function of $beta$ while in the anti-aging regime displays a minimum. This implies that the aging/anti-aging dynamics can retard/anticipate the transition and that there is an optimal rate $beta$ for maximally perturbing the value of the critical noise. The analytical results obtained in the framework of the heterogeneous mean-field approach are validated by extensive numerical simulations on a large variety of network topologies.
Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as
In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary $q$ states, where $q$ is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between th
The majority-vote (MV) model is one of the simplest nonequilibrium Ising-like model that exhibits a continuous order-disorder phase transition at a critical noise. In this paper, we present a quenched mean-field theory for the dynamics of the MV mode
The stationary critical properties of the isotropic majority vote model on random lattices with quenched connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical exponents $gamma$ and $beta$ are fou
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Three examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition i