ﻻ يوجد ملخص باللغة العربية
Stochastic pumps are models of artificial molecular machines which are driven by periodic time variation of parameters, such as site and barrier energies. The no-pumping theorem states that no directed motion is generated by variation of only site or barrier energies [S. Rahav, J. Horowitz, and C. Jarzynski, Phys. Rev. Lett., 101, 140602 (2008)]. We study stochastic pumps of several interacting particles and demonstrate that the net current of particles satisfy an additional no- pumping theorem.
We analyze the operation of a molecular machine driven by the non-adiabatic variation of external parameters. We derive a formula for the integrated flow from one configuration to another, obtain a no-pumping theorem for cyclic processes with thermal
The no-pumping theorem states that seemingly natural driving cycles of stochastic machines fail to generate directed motion. Initially derived for single particle systems, the no-pumping theorem was recently extended to many-particle systems with zer
We prove the second law of thermodynamics and the nonequilibirum fluctuation theorem for pure quantum states.The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a sing
We present a stochastic approach for ion transport at the mesoscopic level. The description takes into account the self-consistent electric field generated by the fixed and mobile charges as well as the discrete nature of these latter. As an applicat
We consider the binary fragmentation problem in which, at any breakup event, one of the daughter segments either survives with probability $p$ or disappears with probability $1!-!p$. It describes a stochastic dyadic Cantor set that evolves in time, a