ﻻ يوجد ملخص باللغة العربية
We prove the second law of thermodynamics and the nonequilibirum fluctuation theorem for pure quantum states.The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy-eigenstate that satisfies the eigenstate-thermalization hypothesis (ETH). Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can experimentally be tested by artificial isolated quantum systems such as ultracold atoms.
We reply to Comment by J. Gemmer, L. Knipschild, R. Steinigeweg (arXiv:1712.02128) on our paper Phys. Rev. Lett. 119, 100601 (2017).
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to eq
We construct a complete set of Wannier functions which are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur